TABLE II. Shock wave data for carbon disulfide. | | Initial
density
(g/cc) | Shock
velocity
(km/sec) | Particle
velocity
(km/sec) | Pressure (kbar) | Relative volume (V/V_0) | Dural shock
velocity
(km/sec) | | |---|------------------------------|-------------------------------|----------------------------------|-----------------|---------------------------|-------------------------------------|---| | - | 1.260 | 2.47±0.01 | 0.75±0.08 | 23±3 | 0.698±0.033 | 5.93±0.07 | - | | | 1.249 | 2.41 ± 0.00 | 0.86 ± 0.04 | 26±1. | 0.642 ± 0.017 | 6.02 ± 0.03 | | | | 1.251 | 2.59 ± 0.01 | 0.86 ± 0.05 | 28±2 | 0.668 ± 0.017 | 6.02 ± 0.04 | | | | 1.251 | 2.94 ± 0.01 | 1.01 ± 0.03 | 37±1 | 0.658 ± 0.010 | 6.16 ± 0.02 | | | | 1.257 | 3.06 ± 0.01 | 1.07 ± 0.03 | 41±1 | 0.650 ± 0.010 | 6.22 ± 0.03 | | | | 1.263 | 3.09 ± 0.01 | 1.08 ± 0.04 | 42±2 | 0.651 ± 0.012 | 6.23 ± 0.03 | | | | 1.264 | 3.39 ± 0.01 | 1.31 ± 0.03 | 56±1 | 0.615 ± 0.008 | 6.43 ± 0.02 | | | | 1.245 | 3.43 ± 0.01 | 1.39 ± 0.02 | 59±1 | 0.594 ± 0.006 | 6.50 ± 0.02 | | | | 1.272 | 3.47 ± 0.01 | 1.40 ± 0.03 | 62±1 | 0.597 ± 0.008 | 6.52 ± 0.02 | | | | 1.260 | 3.47 ± 0.01 | 1.42 ± 0.02 | 62±1 | 0.590 ± 0.007 | 6.54 ± 0.02 | | | | 1.266 | 3.51 ± 0.01 | 1.52 ± 0.08 | 68±4 | 0.566 ± 0.024 | 6.62 ± 0.07 | | | | 1.249 | 3.53 ± 0.01 | 1.72 ± 0.02 | 76±1 | 0.513 ± 0.007 | 6.78 ± 0.02 | | | | 1.249 | 3.55 ± 0.01 | 1.81 ± 0.01 | 80±1 | 0.491 ± 0.004 | 6.86 ± 0.01 | | | | 1.272 | 3.65 ± 0.01 | 1.87 ± 0.05 | 87±2 | 0.489 ± 0.013 | 6.92 ± 0.04 | | | | 1.253 | 3.62 ± 0.01 | 1.91 ± 0.02 | 87±1 | 0.473 ± 0.006 | 6.95 ± 0.02 | | | | 1.251 | 3.78 ± 0.01 | 2.13 ± 0.09 | 101±5 | 0.436 ± 0.025 | 7.14 ± 0.08 | | | | 1.251 | 4.02 ± 0.01 | 2.25 ± 0.02 | 113±1 | 0.442 ± 0.004 | 7.26 ± 0.01 | | | | 1.257 | 4.18 ± 0.00 | 2.28 ± 0.02 | 120±1 | 0.454 ± 0.004 | 7.31 ± 0.02 | | | | 1.264 | 4.20 ± 0.01 | 2.33 ± 0.04 | 124 ± 2 | 0.446 ± 0.009 | 7.35 ± 0.03 | | | | 1.248 | 4.40 ± 0.01 | 2.56 ± 0.03 | 141 ± 2 | 0.420 ± 0.007 | 7.56 ± 0.03 | | | | 1.275 | 4.86 ± 0.02 | 2.77 ± 0.03 | 172 ± 2 | 0.430 ± 0.006 | 7.80 ± 0.03 | | | | 1.253 | 4.80 ± 0.01 | 2.83 ± 0.02 | 170 ± 1 | 0.410 ± 0.005 | 7.83 ± 0.02 | | | | 1.258 | 5.23 ± 0.02 | 3.20 ± 0.08 | 211±5 | 0.388 ± 0.015 | 8.20 ± 0.06 | | | | 1.251 | 5.20 ± 0.02 | 3.31 ± 0.06 | 215 ± 4 | 0.364 ± 0.011 | 8.29 ± 0.05 | | | | 1.251 | 5.68 ± 0.03 | 3.48 ± 0.03 | 247 ± 2 | 0.388 ± 0.006 | 8.48 ± 0.03 | | | | 1.255 | 6.04 ± 0.03 | 3.72 ± 0.09 | 282 ± 7 | 0.384 ± 0.015 | 8.74 ± 0.08 | | | | 1.266 | 6.46 ± 0.02 | 3.92 ± 0.04 | 320 ± 4 | 0.396 ± 0.007 | 8.97 ± 0.04 | | | | 1.254 | 6.36 ± 0.02 | 3.98 ± 0.07 | 317±6 | 0.375 ± 0.011 | 9.00 ± 0.06 | | | | 1,253 | 6.44 ± 0.04 | 4.06 ± 0.09 | 328 ± 7 | 0.371 ± 0.014 | 9.08 ± 0.08 | | | | 1.257 | 6.73 ± 0.03 | 4.37 ± 0.06 | 370 ± 5 | 0.351 ± 0.010 | 9.39 ± 0.05 | | | | 1.258 | 7.34 ± 0.04 | 4.71 ± 0.07 | 435 ± 6 | 0.358 ± 0.010 | 9.77 ± 0.06 | | | | 1.258 | 7.64 ± 0.05 | 4.93 ± 0.07 | 473 ± 7 | 0.355 ± 0.010 | 10.00 ± 0.06 | | | | 1.266 | 7.84 ± 0.03 | 5.09 ± 0.14 | 504 ± 14 | 0.350 ± 0.018 | 10.17 ± 0.12 | | | | 1.253 | 7.98 ± 0.08 | 5.09 ± 0.12 | 509 ± 12 | 0.363 ± 0.017 | 10.18 ± 0.10 | | | | 1.255 | 8.09 ± 0.05 | 5.18 ± 0.11 | 526 ± 11 | 0.360 ± 0.014 | 10.28 ± 0.09 | | Included on the graph is the measured sound speed¹⁹ of the liquid benzene at 22°C and local atmospheric pressure. In Fig. 5 the $P-V/V_0$ data are plotted along with the curves transformed from the fit of the U_s-U_p data. The initial density was 0.879 g/cc. The U_s-U_p and $P-V/V_0$ plots indicate that a transition begins at about $U_s=5.80$ and $U_p=2.60$ km/sec, and a pressure of 133 kbar, and ends at about $U_s=6.30$, $U_p=3.50$, and a pressure of 194 kbar. It is possible that a transition occurs below 5 kbar since the lowest line segment extrapolates to a value on the U_s axis 14% higher than the measured sound speed. The $P-V/V_0$ data of Fig. 5 are represented by concave upward curves below 133 kbar and above 194 kbar, with a third curve fitted to the few points in between. If the upper Hugoniot curve is extrapolated to 133 kbar and the lower Hugoniot curve is used as a reference, the change in V/V_0 due to the transition is about 16%. In many solids the occurrence of a normal instantaneous (less than 0.1 µsec) transition is represented in the $U_{\bullet}-U_{\mu}$ plane by either a change in slope or by an interval of constant shock velocity. The latter case is usually accompanied by a double shock wave structure. The benzene $U_s - U_p$ plot appears to contain a combination of both characteristics since the shock velocity increases very slowly with particle velocity over the small interval described in Eq. (8). However, the formation of a double shock structure is not expected because the Rayleigh line from the foot of the $P-V/V_0$ curve connects all points on the Hugoniot in a single shock process. This conclusion was verified by the performance of some double shock wave experiments as explained in Sec. II. Based on the above observations and a knowledge of other materials, 18,20 benzene is believed to undergo an instantaneous transition for two reasons: (1) a sluggish (greater than 1 µsec) transition is unlikely because a plot of the $U_{\bullet}-U_{p}$ data shows a